

Demenze frontotemporali Genetica

daniele.imperiale@aslcittaditorino.it

Premessa Aspetti generali

- Componente genetica rilevante
 - Storia familiare positiva nel 40-50% dei pazienti
 - Trasmissione di tipo autosomica dominante nel 20-50% delle famiglie
 - Penetranza elevata
- Differenze significative tra le varianti
 - bvFTD: fino quasi al 50% dei casi (> nei casi con MND)
 - SD: >20% dei casi
- ≈ 60% dei casi familiari presentano mutazioni di MAPT, GRN, C9orf72,

- <5%... VCP, CHMPB2, TARDBP, FUS, ITM2B o BRI2, TBK1, TBP
- Geni «modificatori»… TMEM106B
- Diagnosi non sempre agevole...
 - AD (memoria, abilità visuospaziali)
 - LBD (allucinazioni, parkisonismo, fluttuazioni)
 - VaD (decorso «a scalini», segnj pseudobulbari)
 - ... HD (movimenti involontari)

Premessa

Geni coinvolti

Major phenotype	Gene	Familial cases	Sporadic cases	Clinical Presentation(s)	Brain Pathology	Reference
	CHMP2B	<1%	NA		ubiquitin/p62	(Ferrari et al., 2011; Isaacs et al., 2011; Pottier et al., 2016)
FTD	GRN	5-20%	1-5%	FTD	TDP43	(Chen-Plotkin et al., 2010; Pottier et al., 2016; Rohrer and Warren, 2011; Takada, 2015)
	MAPT (tau)	5-20%	0-3%		tau	(Pottier et al., 2016; Rohrer and Warren, 2011; Takada, 2015)
	CHCHD10	<1%	NA	ALS, FTD, myopathy	NA	(Bannwarth et al., 2014)
		30%	~5%	ALS		
	C9orf72	~25%	~5%	FTD, FTD-ALS	TDP43/p62/repeat-dipeptides/ubiquitin	(Pottier et al., 2016; van der Zee et al., 2013)
		~1%	NA	AD, PD, CBS, A		
	CCNF	<1%	NA	ALS, FTD	Not reported	(Williams et al., 2016)
FTD-ALS	DCTN1	<1%	NA	ALS, HMN7B, Perry syndrome, FTD	TDP43	(Munch et al., 2005)
	OPTN	<1%	NA	ALS, FTD	TDP43/OPTN/ubiquitin	(Pottier et al., 2015)
	<i>SQSTM1</i> (p62)	<1%	NA	ALS, FTD, IBM, Pagets disease	TDP43/p62	(Gang et al., 2016; Kovacs et al., 2016; Le Ber et al., 2013)
	TBK1	1-3%	NA	ALS, FTD	TDP43/p62	(Pottier et al., 2016; Van Mossevelde et al., 2016)
	UBQLN2	<1%	NA	ALS, FTD	TDP43/p62/UBQLN2/FUS/OPTN	(Deng et al., 2011; Synofzik et al., 2012)
	VCP	~1%	NA	ALS, FTD, IBM, Pagets disease	TDP43/p62	(Ferrari et al., 2011; Gang et al., 2016)
	KIF5A	<1%	NA	SP, ALS	TDP43	(Brenner et al., 2018)
	FUS	~4%	NA	ALS, FTD	FUS/ubiquitin/EWS/TAF15	(Mackenzie and Neumann, 2016; Nguyen et al., 2018; Urwin et al., 2010)
	MATR3	<1%	NA	ALS, myopathy	MATR3	(Johnson et al., 2014)
ALS	SOD1	~20%	NA	ALS	SOD1/ubiquitin	(Ferrari et al., 2011; Saberi et al., 2015)
	<i>TARDBP</i> (TDP43)	~3-4%	NA	ALS, FTD	TDP43	(Ferrari et al., 2011; Nguyen et al., 2018)
	TIA1*	<1%	NA	ALS, myopathy, FTD	TDP43	(Baradaran-Heravi et al., 2018; Mackenzie et al., 2017)

Premessa

Geni «maggiori»

	Gene	Prevalence	Onset	Phenotype	MRI
MAPT	Familial 10– 20%	Mean 55	Predominant frontotemporal dementia	Frontal and temporal atrophy	
	Sporadic 0– 3%	Range 46–65	+ -parkinsonism	Symmetric	
GRN	Familial 5– 20%	Mean 65	Behavioural most common, apathy, withdrawal	More widespread frontal, temporal atrophy with characteristic parietal atrophy	
	Sporadic 1– 5%	Range 35–89		Asymmetric	
	C90RF72	25%	Mean 50	Behavioural + - ALS	Frontal atrophy, less temporal involvement
		Range 27–83		Symmetric	

Premessa Geni «minori»

GENE	FREQUANCY	AGE OF ONSET	SIGNS	MRI	
TARDNA	<20 cases described	29–77	Behavioural		
FUS FTLD-U	Very rare	30	bvFTD,	Frontal, temporal atrophy	
Intermediate filament inclusion		40–50	Rapidly progressive bvftd + pyramidal/extra pyramidal	Asymetric frontal and temporal atrophy	
Basophilic inclusion body disease		Early onset	ALS		
VCP	1.6%	Mean 40	Musculoskeletal symptoms in 80%	Wide spectrum	
		Range 40–60	Paget's disease 45%	No atrophy	
			FTD 38%		
СНМР2В	Very rare	Mean 55	Behavioural		
		Range 46–65			
TBK1	1.1% in Belgians	Mean 63.3%	Behavioural,		
		Range 56–70	Extrapyramidal		
			Psychiatric		

Premessa Pattern neuropatologici

				Number of	
	Chromosomal	Mutation	Number of	independent	
Gene symbol	location	frequency ^a	mutations ^b	observations ^b	Proteinopathy
C9orf72	9p21.2	10–30%	1	336	FTLD-TDP type B
GRN	17q21.32	10–25%	69	264	FTLD-TDP type A
MAPT	17q21.1	5–20%	44	138	FTLD-tau
VCP	9p13.3	<1%	17	49	FTLD-TDP type D
СНМР2В	3p11.2	<1%	4	5	FTLD-UPS
FUS	16p11.2	<1%	23	54	FTLD-FUS; aFTLD-U
TARDBP	1p36.22	<1%	34	95	FTLD-TDP

Premessa Pattern neuropatologici GRN C9orf72 C9orf72 Sporadici VCP C9orf72

- Inizio anni '90...
- Linkage sul locus 17q21 inizialmente descritto in 13 famiglie
- FTDP-17: disinibizione, demenza, parkinsomismo, amiotrofia
- 1998: mutazioni di MAPT in alcune famiglie

letters to nature

Association of missense and 5'-splice-site mutations in *tau* with the inherited dementia FTDP-17

Mike Hutton^{*1}, Corinne L. Lendon^{*2}, Patrizia Rizzu^{*3,4}, Matt Baker¹, Susanne Froelich^{3,5}, Henry Houlden¹, Stuart Pickering-Brown⁶, Sumi Chakraverty², Adrian Isaacs¹, Andrew Grover¹, Jennifer Hackett¹, Jennifer Adamson¹, Sarah Lincoln¹, Dennis Dickson¹, Peter Davies⁷, Ronald C. Petersen⁸, Martijn Stevens⁴, Esther de Graaff³, Erwin Wauters³, Jeltje van Baren³, Marcel Hillebrand³, Marijke Joosse³, Jennifer M. Kwon⁹, Petra Nowotny², Lien Kuei Che², Joanne Norton⁹, John C. Morris⁹, Lee A. Reed¹⁰, John Trojanowski¹⁰, Hans Basun⁵, Lars Lannfelt⁵, Michael Neystat¹¹, Stanley Fahn¹¹, Francis Dark¹², Tony Tannenberg¹³, Peter R. Dodd¹⁴, Nick Hayward¹⁵, John B. J. Kwok¹⁶, Peter R. Schofield¹⁶, Athena Andreadis¹⁷, Julie Snowden¹⁸, David Craufurd¹⁹, David Neary¹⁸, Frank Owen⁶, Ben A. Oostra³, John Hardy¹, Alison Goate², John van Swieten⁴, David Mann²⁰, Timothy Lynch¹¹ & Peter Heutink³

* These authors contributed equally to this work

						A—C U C Normal I I (∆G= -7.6kcal/mol)
Family	Origin (founder)	Affecteds*	Generations	Mean onset age	Mutation	
HFTD2†	Netherlands	34(15)	7	47	G272V	U —A× G Man19 (∆G≃ -0.3kcal/mol)
HFTD1†	Netherlands	49(14)	5	50	P301L	Splice G —CX U DDPAC (∆G= -0.6kcal/mol)
FTD003	USA	3(2)	2	45–50	P301L	site Utak
Man19	UK	3(1)	2	65	Ex10 splice + 13	$G \leftarrow C \times U$ Ausi, FTD002, Man6, Man23 ($\Delta G = -5.2$ kcai/mol)
DDPAC†	Ireland	13(7)	3	44	Ex10 splice + 14	$\overline{Exon 10} - C$ U_{-} \widetilde{S}
Ausl†	Australia (UK)	28(5)	5	53	Ex10 splice + 16	
FTD002†	USA	3(1)	2	40	Ex10 splice + 16	
Man6	UK	2(1)	1	48	Ex10 splice + 16	
Man23†	UK	10(2)	3	51	Ex10 splice + 16	$\begin{array}{c} \geq \mu < 2 \\ \text{Even 10} \\ \end{array}$
FTD004	USA	10(2)	4	55	R406W	α α συ φυσλου Α α α α α α α α α α α α α α α α α α α
* Confirme	d post mortem ir	n brackets.				<mark>Gυς</mark> ζΆυυζΆύΑ
†Families v	with prior eviden	ce of genetic	linkage to chror	nosome 17.		
						L U1 snRNP
						U U

Mutazioni missense: esoni 9-13

Mutazioni introniche: splicing esone 10

Molto più rare in altri segmenti del gene

- Inclusioni intraneuronali di proteina tau iperfosforilata (corpi di Pick)
- Fenotipi clinici
 - bvFTD
 - PNFA
 - Altre taupatie
 - PSP
 - CBD
 - AGD

- Alterazioni del comportamento, demenza e/o segni extrapiramidali
 - Esordio abbastanza precoce... anche intorno ai 45 anni
 - Disinibizione, ritiro sociale, iperfagia, deficit memoria, amiotrofia
 - Ideazione paranoide
 - Bradicinesia, rigidità, instabilità posturale

- Parkinsonismo e distonia senza alterazioni cognitive e comportamentali
 - Donna, 39 anni, parkinsonismo, aprassia dell'apertura delle palpebre, distonia craniocervicale

C.D., maschio, a.n. 1949

- Ricovero in SPDC nel 2012 (TSO per crisi psicotica).
- Decadimento cognitivo esordito da almeno 2 anni con disturbi comportamentali e deficit mnesici.
- Già obiettivati deficit mnesici e di linguaggio.
- Proposto ricovero per rachicentesi, rifiutato.
- Il padre sembra aver avuto disturbi simili alla stessa età.

g1330G>GT pG336H (esone 12)

Brain (2004), 127, 1415–1426

Frontotemporal dementia with Pick-type histology associated with Q336R mutation in the *tau* gene

S. M. Pickering-Brown,^{1,*} M. Baker,^{7,*} T. Nonaka,^{8,*} K. Ikeda,⁹ S. Sharma,⁷ J. Mackenzie,⁴ S. A. Simpson,⁴ J. W. Moore,⁵ J. S. Snowden,⁶ R. de Silva,² T. Revesz,³ M. Hasegawa,⁸ M. Hutton⁷ and D. M. A. Mann⁶

J Neuropathol Exp Neurol Copyright © 2015 by the American Association of Neuropathologists, Inc. Vol. 74, No. 11 November 2015 pp. 1042–1052

ORIGINAL ARTICLE

A Novel Tau Mutation in Exon 12, p.Q336H, **Causes Hereditary Pick Disease**

Pawel Tacik, MD, Michael DeTure, PhD, Kelly M. Hinkle, MS, Wen-Lang Lin, PhD, Monica Sanchez-Contreras, MD, PhD, Yari Carlomagno, PhD, Otto Pedraza, PhD, Rosa Rademakers, PhD, Owen A. Ross, PhD, Zbigniew K. Wszolek, PhD, and Dennis W. Dickson, MD

- p13.3 p13.2 p13.1 p11.2 p]].1 q]].1 q]].2 q12 q21.1 q21.2 q21.31 q21.32 q21.33 q22 q23.1 q23.2 q23.3 q24.2 q24.3 q25.1 q25.2 q25.3 p12 LOC101929777 SLC25A39 There are too many (90) genes in the region. Please narrow the region to enable exon navigation. 🖢 ≳ NC_000017.11 - <⊃ 🖒 🔍 — 🗈 0 🔍 👜 🚼 😤 🔆 Tools 🗸 | 🏟 Tracks 🗸 📩 Download 🗸 🎅 |44,400 K |44,600 K 44,800 K 45,200 K 46,200 K |46,400 K 45 M 45,400 K |45,600 K 45,800 K 46 M 46,600 K Biological regions, aggregate, NCBI Homo sapiens Annotation Release 109.20190905 29 29 0 > Genes, Ensembl release 98 ENS600000186566 1ENSG00000263715 † ENSG00000186868 *ENSG00000228696 1 ENS600000 rENSG00000264589 +ENS60000012007 +ENSG00000260075 Clinical, dbSNP b153 v2 O X 0 × Cited Variations, dbSNP b153 v 0 > Live RefSNPs, dbSNP b153 v2 O X RNA-seq exon coverage, aggregate (filtered), NCBI Homo sapiens Annotation Release 109 - log base 2 scaled 3361098 a the shall be المارية أراري والقريقة الشرويان RNA-seq intron-spanning reads, aggregate (filtered), NCBI Homo sapiens Annotation Release 109 - log base 2 scaled Ċ. 569443 569443 2048 RNA-seq intron features, aggregate (filtered), NCBI Homo sapiens Annotation Release 109 Ċ. 30 a start in the start of the Genes, NCBI Homo sapiens Annotation Release 109.20190905 14.1 H. †ITGA2B †CRHR1 MAPT. GEAP MAP3K14 GRN 44,400 K 44,600 | 44,800 K 45 M 45,200 K 45,400 K |45,600 K 45,800 K 46 M 46,200 K 46,400 |46,600 K Tracks shown: 10/701 NC_000017.11: 44M..47M (2,464,000 nt)
- Diverse famiglie con linkage su 17q21 ma senza mutazioni di MAPT
- Inclusioni ubiquitinapositive ma taunegative

LETTERS

Null mutations in progranulin cause ubiquitinpositive frontotemporal dementia linked to chromosome 17q21

Marc Cruts^{1,2,5}, Ilse Gijselinck^{1,2,5}, Julie van der Zee^{1,2,5}, Sebastiaan Engelborghs^{3,5,6}, Hans Wils^{1,2,5}, Daniel Pirici^{1,2,5}, Rosa Rademakers^{1,2,5}, Rik Vandenberghe⁷, Bart Dermaut⁹, Jean-Jacques Martin^{4,5}, Cornelia van Duijn¹⁰, Karin Peeters^{1,2,5}, Raf Sciot⁸, Patrick Santens⁹, Tim De Pooter^{1,2,5}, Maria Mattheijssens^{1,2,5}, Marleen Van den Broeck^{1,2,5}, Ivy Cuijt^{1,2,5}, Krist'l Vennekens^{1,2,5}, Peter P. De Deyn^{3,5,6}, Samir Kumar-Singh^{1,2,5} & Christine Van Broeckhoven^{1,2,5}

LETTERS

Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17

Matt Baker¹*, Ian R. Mackenzie²*, Stuart M. Pickering-Brown^{5,6}*, Jennifer Gass¹, Rosa Rademakers¹, Caroline Lindholm³, Julie Snowden⁶, Jennifer Adamson¹, A. Dessa Sadovnick^{3,4}, Sara Rollinson⁵, Ashley Cannon¹, Emily Dwosh⁴, David Neary⁶, Stacey Melquist¹, Anna Richardson⁶, Dennis Dickson¹, Zdenek Berger¹, Jason Eriksen¹, Todd Robinson¹, Cynthia Zehr¹, Chad A. Dickey¹, Richard Crook¹, Eileen McGowan¹, David Mann⁶, Bradley Boeve⁷, Howard Feldman³ & Mike Hutton¹

- Fattore di crescita ubiquitario
- Implicato in molteplici processi
 - Infiammazione
 - Riparazione delle ferite
 - ...
 - Tumorigenesi
 - Funzione neurotrofica
- «Perdita di funzione»
- Aploinsufficienza
 - Dosaggio plasmatico di GRN

- Possibile fattore di rischio per AD
- Penetranza età dipendente
 - 50-60% a 60 anni
 - 90-95% a 70 anni
- Fino a ¼ dei pazienti con mutazioni di GRN vengono diagnosticati come FTD sporadiche

- Numerosi neuriti distrofici ed inclusioni citoplasmatiche di TDP43, scarse inclusioni intranucleari (Tipo A)
- 40% dei casi con pattern Tipo A hanno mutazioni di GRN

- Fenotipi clinici differenti (bvFTD, PPA, parkisonismi)
 - Apatia, ritiro sociale, disturbi del linguaggio
 - Segni extrapiramidali tardivi (40% dei casi)
 - Sindrome cortico-basale
 - Segni parkinsoniani asimmetrici
 - Occasionalmente risposta alla levodopa
 - Distonia
 - Disturbi di memoria
 - Segni parietali
 - Allucinazioni visive
 - Raramente segni di MND(circa 5%)
 - Afasia logopenica

Journal of Alzheimer's Disease 62 (2018) 1683–1689 DOI 10.3233/JAD-170989 IOS Press

Novel GRN Mutations in Alzheimer's Disease and Frontotemporal Lobar Degeneration

Irene Piaceri^a, Daniele Imperiale^b, Enrico Ghidoni^c, Cristiana Atzori^b, Silvia Bagnoli^a, Camilla Ferrari^d, Silvana Ungari^e, Luca Ambrogio^e, Sandro Sorbi^{a,d} and Benedetta Nacmias^{a,*} ^aDepartment of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy ^bNeurology Unit and Human TSE Regional Center, ASL TO2 Maria Vittoria Hospital, Turin, Italy ^cUOC Neurologia, ASMN-IRRCS Reggio Emilia, Italy ^dIRCCS Don Gnocchi, Florence, Italy ^eASO Neurologia, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy

Journal of Alzheimer's Disease 62 (2018) 1683–1689 DOI 10.3233/JAD-170989 IOS Press

Novel GRN Mutations in Alzheimer's Disease and Frontotemporal Lobar Degeneration

Irene Piaceri^a, Daniele Imperiale^b, Enrico Ghidoni^c, Cristiana Atzori^b, Silvia Bagnoli^a, Camilla Ferrari^d, Silvana Ungari^e, Luca Ambrogio^e, Sandro Sorbi^{a,d} and Benedetta Nacmias^{a,*} ^aDepartment of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Italy ^bNeurology Unit and Human TSE Regional Center, ASL TO2 Maria Vittoria Hospital, Turin, Italy ^cUOC Neurologia, ASMN-IRRCS Reggio Emilia, Italy ^dIRCCS Don Gnocchi, Florence, Italy

^eASO Neurologia, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy

C9orf72

- Associazione tra FTD e MND
 - Linkage su 9q21 (2006)
 - Espansione GGGCC su C9orf72 (2011)
- Soggetti normali: 2-24 ripetizioni
 - <25 unità in popolazioni Europee e Nord-Americane
 - <15 unità in popolazioni Asiatiche
- Soggetti «patologici»: 10²-10³ ripetizioni
- Non è nota la minima espansione «patologica»
- In vitro correlazione inversa tra entità dell'espansione ed espressione del gene
- Mutazioni più frequenti nel Nord Europa (Scandinavia)

C9orf72

- Pattern neuropatologici variabili
 - FTD-TDP: Tipo A ≈ Tipo B >> Tipo C
 - Raramente FTD-UPS
- Quadri clinici variabili
 - Eterogeneità inter- e intra-familiare
 - FTD e MND frequentemente isolati, coesistenza nel 17-30% dei casi C9orf72
 - bvFTD in $\approx 2/3$ dei casi FTD
 - PPA (nfv-PPA)
 - Sintomi psichiatrici
 - Ideazione patologica, stereotipie
 - Associazione con segni extrapiramidali
 - Sintomi tipo OCD
 - Iperfagia generalmente assente

- Fenotipi non FTD
 - AD
 - Corea di Huntington
- Età di esordio estremamente variabile (da <30 anni a >80 anni)
- Descritta «anticipazione»
 - <80 ripetizioni: in media 53 anni
 - >80 ripetizioni: in media 62 anni
 - Esordio più precoce nelle generazioni più giovani
 - Differenza anche di circa 1000 ripetizioni tra generazioni successive
 - Differente metilazione della regione CpG al 5' di C9orf72

Geni «minori»

CHMP2B (3p11.2)

- Sistema endosoma/lisosoma, autofagia
- Mutazioni rare, STOP codon
- Pattern FTD-UPS
- bvFTD (tipo Pick)
 - Parkisonismo
 - Distonia
 - Segni piramidali
 - Mioclono
- Meno frequentemente
 - PPA
 - MND
- Esordio 45-65 anni

VCP (9p11.3)

- Sindrome specifica (IBMPFD)
 - FTD (30%)
 - Miopatia a corpi inclusi (90%)
 - Morbo di Paget (50%)
 - Esordio dei sintomi cognitivi più tardivo
- bvFTD o svPPA
 - Sintomi psichiatrici precoci
- Altre entità nosologiche
 - PD
 - AD
 - CMT2
 - HSP
- Esordio 45-65 anni

Ferrari et al., 2019

The Use of Biomarkers and Genetic Screening to Diagnose **Frontotemporal Dementia: Evidence** and Clinical Implications

Helena Gossye^{1,2,3}, Christine Van Broeckhoven^{1,2} and Sebastiaan Engelborghs^{2,3*}

¹ Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium, ² Institute Born – Bunge, University of Antwerp, Antwerp, Belgium, ³ Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium

EP symptoms, early AOO: expect MAPT - apathetic bvFTD/nfv-PPA, hallucinations, apraxia, amnestic syndrome, asymmetric and fast rate atrophy on MRI: expect GRN early personality change, dystonia, pyramidal signs, myoclonus: expect

IBM, PDB, early psychosis: expect VCP

ORIGINAL RESEARCH published: 06 August 2019 doi: 10.3389/fnins.2019.00757

